This website uses cookies to improve service quality. You will find more information about cookies on the privacy policy page.

What is Tensile Strength?

Tensile strength refers to the amount of load or stress that a material can handle until it stretches and breaks. As its name implies, tensile strength is the material’s resistance to tension caused by mechanical loads applied to it.

Terms such as ultimate tensile strength (UTS) or ultimate strength are used interchangeably with tensile strength.

A particular material’s response to tension stress – that is, the force from an axial pull – depends on the nature of the said material. Some materials exhibit an abrupt fracture when the tensile capacity is reached. Others, meanwhile, show deformation or necking before completely breaking apart.

In alloys, tensile strength is influenced by composition, such as the amount of carbon in carbon steels.

Here, you will learn about:

  • How tensile strength is measured
  • Tensile strength profiles of different materials
  • Applications where tensile strength is important

tensile-strength-test-compressed.jpg

How is tensile strength measured?

A tensile test measures the level of strength that a material possesses. A material testing laboratory usually conducts the test using a universal testing machine (UTM), which holds a specimen material in place and applies the tension stress needed to check the breaking point. The equipment is connected to an extensometer, which measures changes in the specimen’s length.

The specimen used for tensile testing is shaped into a round bar with a large shoulder on either end, from which the UTM can grip the material during application of tensile stress. As the machine pulls the specimen, change in the gage length is measured.

This same test can also determine yield strength, which measures the maximum amount of stress before showing plastic deformation.

The test is conducted in a controlled environment to prevent other factors from coming into play, such as temperature and exposure to impurities.

Tensile strength is measured in pressure units, most commonly in units of Pascal (MPa or GPa in stronger materials).

Strength-to-weight ratio is an important parameter for structural engineers and material manufacturers. This figure is calculated by dividing the load-carrying capacity by the material weight. When a particular material or structural component is expected to receive tension stress, the strength-to-weight ratio determines how much the material can withstand.

Tensile strength of materials

Each material has its own unique tensile capacity. This is the reason why some materials are effective for industries and applications where tension stress occurs.

Graphene is considered to be one of the strongest materials able to withstand tension stress. Its tensile strength is 130,000 MPa, which is higher than steel (at 400 - 2,700 MPa). As a result, the material may be manufactured as ultra-thin sheets that are extremely strong and durable. Because of its high capacity for tension stress, this carbon allotrope has found its way into buildings and aircraft design.

Boron nitride nanotubes have a tensile strength of 33,000 MPa, which makes it a suitable material for aerospace applications.

Plastics exhibit relatively low tolerance for tensile stress, with most of its variants experiencing elongation and tearing at only 5 MPa as in the case of PVC-P.

Here are other common materials and their tensile strength profiles:

Material

Tensile Strength (MPa)

Carbon fibre

7,000

Aramid/Kevlar

3,757

Diamond

2,800

Mild steel

840

Brass

500

Human hair

200

HDPE

37

Glass

33

Applications where tensile strength is important

Materials with high strength against tension stress are useful in the following applications:

  • Manufacturing of metals: Most metals are designed to have high strength, and so developing metal materials and alloys requires careful consideration of the tensile strength.
  • Aerospace applications: Due to the speed and pressure differences experienced by aircraft structures, manufacturing of these vessels require materials with high tensile strength.
  • Bridges and suspensions: The forces exerted on bridges come from vehicle weight and wind force, and it’s imperative that the materials used in these structures can withstand extreme tension pressure.
  • Ropes and cables: Based on their intended purposes, these paraphernalia require a high degree of durability against tensile stress. This is especially useful when they’re used in marine vessels, suspension bridges, and other similar applications where pulling is a necessary action.

tensile strength - suspension bridge.jpg

Sources

[1] "True Stress and True Strain," n.d., Accessed on: Nov. 06, 2019. [Online] Available: https://web.adanabtu.edu.tr/Files/iyilmaz/Duyuru/dosya/

[2] J.R. Davis, "Chapter 7: Tensile Testing of Metals and Alloys," Tensile Testing, 2nd Edition, OH: ASM International, 2004.

[3] N. Stephenson, "Strain Gauge Extensometers," 2002, Accessed on: Nov. 06, 2019. [Online] Available: http://user.engineering.uiowa.edu/~bme_158/

[4] J.M. Gere, B.J. Goodno, "Chapter 1: Tension, Compression, and Shear," Mechanics of Materials, 7th Edition, Canada: Cengage Learning, 2009.

[5] C. Lee, X. Wei, J.W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, vol. 321, pp. 385-388, July 2008.

Did you know? Graphene is considered one of the strongest materials able to withstand tension stress, with a tensile strength of 130,000 MPa.

Compare tensile strength of materials on the Matmatch materials search engine