UGI® 4410

Want to keep this datasheet? Save it now in your required format

Description

UGI® 4410 is a superduplex stainless steel designed for applications in highly corrosive environments. It has the following advantages:


  • very high mechanical properties;
  • excellent resistance to different types of corrosion in aggressive environments.


    In its delivery condition (solution-annealed), the structure of UGI® 4410 is two-phase: ferrite + austenite. It contains between 45% and 55% ferrite and is free from intermetallic phases and chromium carbonitrides. UGI® 4410 is highly susceptible to the precipitation of intermetallic phases that degrade mechanical properties (reduced toughness) and corrosion resistance. The sigma phase precipitates at between 600°C and 1000°C, after a holding time of a few minutes. The sigma precipitation phase at between 350°C and 550°C also poses a risk of embrittlement. Consequently, the temperature at which the grade is used must be limited to 300°C.

  • Related Standards

    Equivalent Materials

    This material data has been provided by Ugitech SA.

    All metrics apply to room temperature unless otherwise stated. SI units used unless otherwise stated.
    Equivalent standards are similar to one or more standards provided by the supplier. Some equivalent standards may be stricter whereas others may be outside the bounds of the original standard.

    Ashby charts

    See where falls on the material property chart for against in your materials selection and design process. Our Ashby charts are interactive with more technical data upon clicking. Sign up to get access to this premium feature for free.

    Properties

    General

    PropertyValue

    Density

    7.8 g/cm³

    Show Supplier Material materials with Density of 7.8 g/cm³

    Mechanical

    PropertyTemperatureValueComment

    Charpy impact energy, V-notch

    -60 °C

    50 J

    Show Supplier Material materials with Charpy impact energy, V-notch of 50 J

    min.

    -46 °C

    100 J

    Show Supplier Material materials with Charpy impact energy, V-notch of 100 J

    min.

    20 °C

    200 J

    Show Supplier Material materials with Charpy impact energy, V-notch of 200 J

    min.

    Elastic modulus

    20 °C

    200 GPa

    Show Supplier Material materials with Elastic modulus of 200 GPa

    100 °C

    194 GPa

    Show Supplier Material materials with Elastic modulus of 194 GPa

    200 °C

    186 GPa

    Show Supplier Material materials with Elastic modulus of 186 GPa

    300 °C

    180 GPa

    Show Supplier Material materials with Elastic modulus of 180 GPa

    Unlock all property charts

    Elongation

    25 %

    Show Supplier Material materials with Elongation of 25 %

    min.

    Tensile strength

    750.0 - 930.0 MPa

    Show Supplier Material materials with Tensile strength of 750.0 - 930.0 MPa

    Thermal

    PropertyTemperatureValueComment

    Coefficient of thermal expansion

    0.000013 1/K

    Show Supplier Material materials with Coefficient of thermal expansion of 0.000013 1/K

    20 to 100°C

    0.0000135 1/K

    Show Supplier Material materials with Coefficient of thermal expansion of 0.0000135 1/K

    20 to 200°C

    0.000014 1/K

    Show Supplier Material materials with Coefficient of thermal expansion of 0.000014 1/K

    20 to 300°C

    Specific heat capacity

    20 °C

    500 J/(kg·K)

    Show Supplier Material materials with Specific heat capacity of 500 J/(kg·K)

    100 °C

    530 J/(kg·K)

    Show Supplier Material materials with Specific heat capacity of 530 J/(kg·K)

    200 °C

    560 J/(kg·K)

    Show Supplier Material materials with Specific heat capacity of 560 J/(kg·K)

    300 °C

    590 J/(kg·K)

    Show Supplier Material materials with Specific heat capacity of 590 J/(kg·K)

    Unlock all property charts

    Thermal conductivity

    20 °C

    15 W/(m·K)

    Show Supplier Material materials with Thermal conductivity of 15 W/(m·K)

    100 °C

    16 W/(m·K)

    Show Supplier Material materials with Thermal conductivity of 16 W/(m·K)

    200 °C

    17 W/(m·K)

    Show Supplier Material materials with Thermal conductivity of 17 W/(m·K)

    300 °C

    18 W/(m·K)

    Show Supplier Material materials with Thermal conductivity of 18 W/(m·K)

    Unlock all property charts

    Electrical

    PropertyTemperatureValue

    Electrical resistivity

    20 °C

    0.0000008 Ω·m

    Show Supplier Material materials with Electrical resistivity of 0.0000008 Ω·m

    100 °C

    0.00000085 Ω·m

    Show Supplier Material materials with Electrical resistivity of 0.00000085 Ω·m

    200 °C

    0.0000009 Ω·m

    Show Supplier Material materials with Electrical resistivity of 0.0000009 Ω·m

    300 °C

    0.000001 Ω·m

    Show Supplier Material materials with Electrical resistivity of 0.000001 Ω·m

    Unlock all property charts

    Chemical properties

    PropertyValueComment

    Carbon

    0.03

    Show Supplier Material materials with Carbon of 0.03

    max.

    Chromium

    25.0 - 26.0 %

    Show Supplier Material materials with Chromium of 25.0 - 26.0 %

    Manganese

    2.0

    Show Supplier Material materials with Manganese of 2.0

    max.

    Molybdenum

    3.3 - 4.0 %

    Show Supplier Material materials with Molybdenum of 3.3 - 4.0 %

    Nickel

    6.5 - 7.5 %

    Show Supplier Material materials with Nickel of 6.5 - 7.5 %

    Nitrogen

    0.24 - 0.30000000000000004 %

    Show Supplier Material materials with Nitrogen of 0.24 - 0.30000000000000004 %

    Phosphorus

    0.035

    Show Supplier Material materials with Phosphorus of 0.035

    max.

    Silicon

    1.0

    Show Supplier Material materials with Silicon of 1.0

    max.

    Sulfur

    0.002

    Show Supplier Material materials with Sulfur of 0.002

    max.

    Technological properties

    Property
    Application areas

    UGI® 4410 is designed for applications requiring very good corrosion resistance in aggressive environments in the presence of chlorides, as well as high mechanical properties, such as for example:

    The chemical and petrochemical industries

    The sea water desalination industry

    The paper pulp industry

    Cold Forming

    UGI® 4410 is suitable for cold forming by conventional methods. The forces on the tools are high, due to the high mechanical and work-hardening properties of the grade. The austenite is stable and cold deformation therefore does not induce martensitic transformation.

    Corrosion properties

    General corrosion: The corrosion resistance properties of UGI® 4410 are very good in this type of corrosion that may be encountered in the mineral acid and organic acid chemical production industry; they include, for example, better resistance of UGI® 4410 compared with that of superaustenitic UGI® 4539/904L in formic acid, hydrochloric acid and sulphuric acid, for concentrations less than 25% by weight.


    Localised corrosion: The localised corrosion resistance initiated by chloride ions is excellent for UGI® 4410.


    Pitting corrosion: The pitting corrosion resistance can be estimated by using the pitting index formula PREN=%Cr+3.3%Mo+16%N. For UGI® 4410, it gives a PREN of 41 min., which is significantly higher than the PREN of 33 min. for UGI® 4462. Tests with 10% by weight ferric chloride (ASTM G48 type test) were used to determine the limit temperature at which pitting corrosion occurs (C.P.T.): we guarantee resistance at 55°C for UGI® 4410, which is far higher than the 35°C measured for UGI® 4462.


    Crevice corrosion: The critical temperature at which crevices occur can be estimated in a 6% by weight ferric chloride environment (ASTM G48 type test); it is, on average, 35°C for UGI® 4410, as opposed to 25°C on average for UGI® 4462 and 20°C on average for UGI® 4539.


    Stress corrosion: The stress corrosion resistance of UGI® 4410 is very good in environments containing chloride ions and/or hydrogen sulphide.

    General machinability

    Due to its very high mechanical properties and the high hardenability of its austenite, UGI® 4410 quickly wears out cutting tools. This will consequently limit cutting speeds to levels slightly below those used for 1.4507 stainless steel. In addition, as for most austeno-ferritic stainless steels, it will be preferable to use harder cutting tools than those used for austenitic stainless steels such as 1.4404 (see, for example, the rough turning possibilities of the STELLRAM SP0819 tool as opposed to those of SECO TM2000). In addition, as with the most austeno-ferritic stainless steels, during machining, UGI® 4410 generates chips that are difficult to break. Whenever possible, preference should therefore be given to relatively high cutting feed rates that will make it easier to break the chips.


    Turning: The table on the right gives, by comparison with other grades, the cutting speeds that can be accessed by UGI® 4410 during rough turning (base 100: 1.4462 with the SECO TM2000 tool).

    Drilling: As with most austeno-ferritic stainless steels, UGI® 4410 is difficult to drill, due to very high cutting forces on the tools, causing them to wear out fast, and poor breakability of the chips created, resulting in random drill breakage. It is therefore strongly recommended that the drills be lubricated internally using high oil pressures to improve chip breakability and removal. Drilling cycles with reaming can also be used to make UGI® 4410 easier to drill.

    Heat Treatment

    Solution annealing: UGI® 4410 bars and wires are supplied solution annealed. To reduce the hardness and restore the ductility of UGI® 4410 after hot or cold forming, heat treatment can be carried out at between 1050°C and 1120°C, preferably 1100°C, followed by rapid cooling (water) to avoid precipitating embrittling phases (intermetallic or chromium nitride) during cooling

    Hot forming

    UGI® 4410 can be formed at high temperature (forging, rolling) between 1000°C and 1250°C, preferably between 1100°C and 1250°C, to minimize forces and increase ductility. There is a risk of sigma phase formation if the temperature of the product falls below 1025°C during forming. Solution annealing is therefore strongly recommended for components formed at high temperature, in accordance with the recommendations indicated in the heat treatment section.

    Other

    Available products:


    ProductFormFinishToleranceDimensions (mm)
    BarsRoundRolled descaled1371 to 120
    RoundTurned10 - 11 - 1271 to 120
    Semi-finished productsSquareGround80 to 120


    Other products: contact the supplier

    Welding

    UGI® 4410 can be welded by friction, resistance, arc, with or without filler wire (MIG, TIG, coated electrode, plasma, submerged arc, etc.), LASER beam, electron beam, etc. However, unlike austenitic stainless steels, UGI® 4410 must be welded in accordance with a welding heat input field to ensure good welded area resilience. If the welding heat input is too high, there is a risk, due to too-slow cooling after welding, of the formation of an embrittling sigma phase in the heat-affected zone (HAZ). If the linear welding energy is too low, there is a risk, due to too-rapid cooling after welding, of the HAZ being too ferritic and, therefore, brittle. The welding heat input field to be complied with depends mainly on the geometry of the components to be welded, and in particular, their thickness. The thicker the components, the faster the weld cools, shifting the field of linear welding heat input towards high energies. The welding heat input field to be complied with also depends on the welding process used (MIG, TIG, etc.).


    In the event of multipass welding, it is important to let the weld cool to below 150°C between each pass. Preheating the components before each welding operation is not advisable and no heat treatment should be carried out after welding, except, if necessary, solution annealing as described in the "Heat treatment" section.


    MIG welding: The most suitable filler wire for MIG welding UGI® 4410 is UGIWELDTM 25.9.4 (ISO14343 - A: 25 9 4L). Its more austenitic balance than that of UGI® 4410 limits the percentage of ferrite in the weld metal (WM) and thus the risk of embrittlement in the WM. A shielding gas of low oxidizing potential (Ar + 1 to 3% O₂ or CO₂) is preferred, to limit the percentage of oxygen in the weld zone and consequently ensure good resilience in the WM. Under no circumstances should hydrogen be added to the shielding gas, to avoid the risks of cold cracking in the weld area. If necessary, a few per cent of N₂ may be added to the shielding gas to compensate for any loss of nitrogen in the weld zone during the welding operation.


    TIG welding: A neutral shielding gas MUST be used (Ar, possibly partly substituted by He) to protect the tungsten electrode. As with MIG welding, the shielding gas MUST NOT contain hydrogen. Due to the absence of oxygen in the protection gas, this process makes it easier to ensure good resilience in the weld zone.